Direct growth suppression of myeloid bone marrow progenitor cells but not cord blood progenitors by human cytomegalovirus in vitro.
نویسندگان
چکیده
Recently, considerable interest has arisen as to use cord blood (CB) as a source of hematopoietic stem cells for allogenic transplantation when bone marrow (BM) from a familial HLA-matched donor is not available. Because human cytomegalovirus (HCMV) has been shown to inhibit the proliferation of BM progenitors in vitro, it was important to examine whether similar effect could be observed in HCMV-infected CB cells. Therefore, the effect of HCMV challenge on the proliferation of myeloid progenitors from BM and CB was compared using both mononuclear cells (MNC) and purified CD34+ cells. A clinical isolate of HCMV inhibited the colony formation of myeloid BM progenitors responsive to granulocyte-macrophage colony-stimulating factor (CSF), granulocyte-CSF, macrophage-CSF, interleukin-3 (IL-3) and the combination of IL-3 and stem cell factor (SCF). In contrast, colony growth of CB progenitors was not affected. In addition, HCMV inhibited directly the growth of purified BM CD34+ cells responsive to IL-3 and SCF in single cell assay by 40%, wheras the growth of CD34+ progenitors obtained from CB was not suppressed. The HCMV lower matrix structural protein pp65 and HCMV DNA were detected in both CB and BM CD34+ cells after in vitro challenge. However, neither immediate early (IE)-mRNA nor IE proteins were observed in infected cells. Cell cyclus examination of BM and CB CD34+ cells revealed that 25.7% of BM progenitors were in S + G2/ M phase wheras only 10.7% of the CB progenitors. Thus, a clinical isolate of HCMV directly inhibited the proliferation of myeloid BM progenitors in vitro wheras CB progenitors were not affected. This difference in the susceptibility of CB and BM cells to HCMV may partly be caused by the slow cycling rate of naive CB progenitors compared to BM progenitors at the time of infection.
منابع مشابه
Growth suppression effect of human mesenchymal stem cells from bone marrow, adipose tissue, and Wharton's jelly of umbilical cord on PBMCs
Objective(s):Immunosuppressive property of mesenchymal stem cells (MSCs) has great attraction in regenerative medicine especially when dealing with tissue damage involving immune reactions. The most attractive tissue sources of human MSCs used in clinical applications are bone marrow (BM), adipose tissue (AT), and Wharton's jelly (WJ) of human umbilical cord. The current study has compared immu...
متن کاملHuman cytomegalovirus suppression of and latency in early hematopoietic progenitor cells.
Bone marrow cells (BMC) are involved in the pathogenesis of human cytomegalovirus++ (HCMV) infections, and the hematopoietic cells are probable sites of HCMV latency in healthy donors. In vitro studies have indicated both a direct inhibitory effect of HCMV on proliferation and differentiation of myeloid bone marrow progenitors and an impairment of bone marrow stroma cell function by HCMV. The p...
متن کاملEXPANSION OF HUMAN CORD BLOOD PRIMITIVE PROGENITORS IN SERUM-FREE MEDIA USING HUMAN BONE MARROW MESENCHYMAL STEM CELLS
Ex vivo expansion of human umbilical cord blood cells (HUCBC) is explored by several investigators to enhance the repopulating potential of HUCBC. The proliferation and expansion of human hematopoietic stem cells (HSC) in ex vivo culture was examined with the goal of generating a suitable clinical protocol for expanding HSC for patient transplantation. Using primary human mesenchymal stem ...
متن کاملMechanisms of cytomegalovirus-mediated myelosuppression: perturbation of stromal cell function versus direct infection of myeloid cells.
Infection with cytomegalovirus (CMV) continues to be one of the most common complications following allogeneic bone marrow transplantation. To study the role of CMV in the suppression of hemopoiesis that frequently accompanies infection, we investigated the effect of CMV on the growth of isolated committed myeloid progenitors and on hemopoiesis in long-term bone marrow cultures. Laboratory stra...
متن کاملBone marrow-derived cells are implicated as a source of lymphatic endothelial progenitors in human breast cancer
Bone marrow-derived endothelial progenitor cells (EPCs) infiltrate into sites of neovascularization in adult tissues and mature into functional blood endothelial cells (BECs) during a process called vasculogenesis. Human marrow-derived EPCs have recently been reported to display a mixed myeloid and lymphatic endothelial cell (LEC) phenotype during inflammation-induced angiogenesis; however, the...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Blood
دوره 88 7 شماره
صفحات -
تاریخ انتشار 1996